Exploration of the Minimum Visual Impairment Criteria for Para Alpine Skiing using Simulated Vision Impairments

Kristine Dalton, Amritha Stalin

SCHOOL OF OPTOMETRY **& VISION SCIENCE**

Disclosures

- Funded by an International Paralympic Committee Classification Research Grant (with World Para Snow Sport).
- Additional funding provided by University of Waterloo

INTRODUCTION

- Classification
 - 1) Minimum impairment criteria
 - 2) Sport classes for competition
 - Evidence-based and sport-specific
- The purpose of this project was to investigate the minimum vision impairment criteria for Para Alpine Skiing

1. IPC Athlete Classification Code: Rules, Policies and Procedures for Athlete Classification, July 2015

International Paralympic Committee

METHODS

- Within-subjects repeated measures study design
 - Experienced skiers with normal sight were asked to ski with simulated vision impairments
 - Visual Acuity + Contrast Sensitivity Impairments
 - Cambridge Sim Specs
 - Visual Field Impairments
 - Bespoke goggles
 - Visit 1: Visual function assessment + skiing experience questionnaire
 - Static Visual Acuity, Contrast Sensitivity, Visual Field Extent
 - Habitual vision and simulated impairments
 - Visit 2: On snow assessment
 - National Sports Center for the Disabled, Winter Park, USA

SCHOOL OF OPTOMETRY & VISION SCIENCE

VISIT 1

- Visual Acuity
 - ETDRS and BRVT charts (logMAR)
 - 0.1 logMAR to 1.6 logMAR
- Contrast Sensitivity
 - MARS charts (logCS)
 - 1.7 logCS to 0.1 logCS
- Visual Fields
 - Arc Perimetry with an Esterman Scoring Grid
 - 85% to 20% visual field extent

SCHOOL OF OPTOMETRY & VISION SCIENCE

VISIT 2

- 20 skiing trials total
 - 2 x 10 gate GS courses; 10 trials per course
 - Goal: maintain consistent 70 to 80% pace across trials
 - First and last trials on each course were always with clear goggles
 - 4 trials total; minimum 2 clear trials per course
 - Middle 16 trials total (8 per course) included:
 - 2 clear goggle trials
 - 8 visual acuity + contrast sensitivity impairments
 - 6 visual field binocular visual field impairments
 - All randomly assigned across both courses

STATISTICAL ANALYSIS

- Shapiro Wilk test, Q-Q plots to check normality
- Friedman's 2-way Analysis of Variance (p<0.05) with Dunn post-hoc test
 - Fatigue effects, order effects, simulated impairment effects
 - Dependent variable: Time to complete each run compared to baseline (per course)
- Receiver operator analysis (ROC) was used to identify optimal impairment level
 - Youden's J: maximum sensitivity and specificity overall (optimum criteria)
 - Sensitivity: correctly identify skiers with vision impairments
 - Specificity: correctly identify skiers without vision impairments

POPULATION

- 11 male sighted, experienced Alpine skiers
 - Age: 37.91 ± 18.9 years (17 to 64 years)
 - Years of Experience: 29.91 ± 14.88 years (15 to 58 years)
 - Skiing Hours per Week: 22.45 ± 13.62 hours (6 to 42.5 hours)
 - Ski club racers (n=5), Masters ski racers (n=3), coaches (n=3)

FATIGUE EFFECTS

- No difference in race time was found across the clear goggle trials on either course
 - Skiers could maintain a consistent race pace
 - Average race time of clear goggle trials = BASELINE
 - Calculated for each course
 - All simulated impairment trials compared to baseline time (per course)

Internationa

Paralympic Committee

ORDER EFFECTS

- There was a significant order effect found on Course 2 only
 - Fifth and ninth runs on course 2 were significantly slower than other trials (p<0.01)
 - Proportion of severe impairments was much higher on these two runs (64% vs. ≤46%)

VISUAL ACUITY & CONTRAST SENSITIVITY

- Skiing performance decreased gradually with increasing impairment
 - Significant decrease in performance (p<0.05) from Level 5
 - VA: 1.20 logMAR
 - CS: 0.60 logCS

SCHOOL OF OPTOMETRY & VISION SCIENCE

VISUAL ACUITY

- Max Youden's J = 0.81 at 0.59 logMAR
 - Sensitivity = 0.93, Specificity = 0.88
- Youden's J = 0.70 @ B3 (1.0 logMAR)
 - Sensitivity = 0.73, Specificity = 0.98

CONTRAST SENSITIVITY

Max Youden's J = 0.78 at 1.14 logCS

Committee

• Sensitivity: 0.81, Specificity: 0.74

VISUAL FIELD

- Skiing performance decreased gradually increasing impairment
 - Significant decrease in performance (p<0.05) from Level 5
 - VF: **30.8% extent**

VISUAL FIELD

• Max Youden's J = 0.59 at 54.2% extent¹²

Committee

- Sensitivity: 0.88, Specificity: 0.71
- Youden's J = 0.22 at B3 (21.7% extent)
 - Sensitivity: 0.29, Specificity: 0.93

- Mild reductions in visual acuity, and moderate reductions in contrast sensitivity and visual field appear to affect skiing performance
 - Visual Acuity: 0.6 logMAR
 - Contrast Sensitivity: 1.1 logCS
 - Visual Field: 54% extent
- The results of this study will help to inform the minimum visual impairment criteria for Para Alpine Skiing

ACKNOWLEDGEMENTS

- World Para Alpine Skiing and the International Paralympic Committee
- The Classification Research and Development Center for athletes with vision impairment, Vrije Universiteit Amsterdam
- National Sports Center for the Disabled, Winter Park, USA
- Participants, coaches, and team members

Classification Research Partner

S NATIONAL SPORTS CENTER FOR THE DISABLED

